
Abstract. After the de®nitions of ampli®ed representa-
tions and number-theoretical vectors, the markaracter
table of a cyclic subgroup is converted into the corre-
sponding Q-conjugacy character table. The conversion
is shown to necessitate an interconversion matrix that
contains MoÈ bius functions as elements. Since the inter-
conversion matrix gives characteristic monomials for
cyclic groups, all the powers appearing in each of the
characteristic monomials are shown to be integers.
Characteristic monomials for ®nite groups are then built
up by starting from those of cyclic groups. This
procedure clari®es the fact that all the powers appearing
in each characteristic monomial for ®nite groups are
integers. The relationship between characteristic mono-
mial tables and unit-subduced-cycle-index tables is
discussed with respect to their application to isomer
enumeration.

Key words: Q-conjugacy character ± Characteristic
monomial ± MoÈ bius function ± Enumeration ± Group

1 Introduction

1.1 Background

Chemical applications of group theory can be catego-
rized into two distinct approaches. One approach has
been the application to quantum chemistry, spectrosco-
py, etc., where linear representations, irreducible repre-
sentations, and character tables play an important role,
as explained in many excellent textbooks [1±9]. The
other approach has mainly aimed at the enumeration of
isomers [10±14] though the methods concerned have
been further applied to enumeration problems in quan-
tum chemistry, etc., as reviewed in detail in Ref. [15]. In
this approach, the concept of cycle indices is a key to
counting isomers with respect to molecular formulas.
The approach has been extended to make it capable of
more elaborate enumerations concerning both molecular
formulas and symmetries [16±19], which are based on

permutation representations and mark tables [20±23].
We have recently reported the unit-subduced-cycle-index
(USCI) approach to systematic enumeration of isomers,
where subduction of coset representations is proposed as
a new methodology [24±30].

1.2 Problem setting

In the previous papers of this series [29, 30], we proposed
the concept of markaracters, which was later shown to
link characters with marks via Q-conjugacy characters
[31]. The latter characters have been de®ned as matured
characters related to Q-conjugacy classes. Thus, the two
approaches described above can now be discussed on a
common basis. In particular, we have shown that any
character table (e.g., Table 1 for T group) can be
transformed to the corresponding Q-conjugacy charac-
ter table (e.g., Table 2 for T group) by considering
Q-conjugacy classes [e.g., K1, K2, and K3�� K31 � K31�]
in place of conjugacy classes (e.g., K1 � fIg, K2 �
fC2�1�;C2�2�;C2�3�g, K31 � fC3�1�;C3�2�;C3�3�;C3�4�g and

K32 � fC2
3�1�;C

2
3�2�;C

2
3�3�;C

2
3�4�g) [31, 32]. Moreover, char-

acteristic monomial tables (e.g., Table 3 for T group)
have been derived from Q-conjugacy character tables,
where they have been used for solving enumera-
tion problems in place of USCIs derived from mar-
karacters.

The remaining problem is to clarify the properties
of the characteristic monomials. As found by com-
parison between Tables 2 and 3, the power of each
dummy variable of subscript 1 (s1) is equal to the
corresponding Q-conjugacy character. However, it has
not been clari®ed whether the power of a dummy
variable of subscript 2 or more (sn for n � 2) is an
integer or not. In this paper, we shall prove that all the
powers appearing in each characteristic monomial are
integers and shall discuss the relationship between
characteristic monomial tables and USCI tables. This
proof assures us of the wide applicability of charac-
teristic monomials to various problems of combinato-
rial enumeration.
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2 Number-theoretic vectors

The purpose of this section is to describe the concept
of number-theoretic vectors in order to clarify the
relationship between markaracters [29] and Q-conjugacy
characters [31]. The concept is an extention of number-
theoretic functions described in Chapter 1 of Ref. [33].
Although the main result described in this section has
been well known [34], an alternative viewpoint concern-
ing markaracter tables and Q-conjugacy characters
tables will be mentioned for the application to combi-
natorial enumeration.

2.1 Ampli®cative equivalence of coset representations

Let Cn be a cyclic group of order n. Any subgroup of Cn
is a cyclic group of order d, where the integer d is a
divisor of n. Then, we have a coset decomposition,

Cn � Cdh1 � Cdh2 � � � � � Cdhs=d ; �1�
where h1; h2; . . . ; hs=d are the representatives of the
cosets. The coset decomposition produces a coset
representation Cn�=Cd�. Obviously, Cn�=Cd� is not
faithful if d is not equal to 1. For any h 2 Cd and any
coset Cdhi (i � 1; 2; . . . ; s=d), we have

Cdhih � Cdhhi � Cdhi: �2�
It follows that Cn�=Cd��h� � I for any h 2 Cd , where I is
an identity permutation of degree s=d. On the other
hand, we have

Cdhih � Cdhhi 6� Cdhi �3�
for any h 62 Cd . As a result, we obtain a lemma.

Lemma 1. Let Cd be a cyclic subgroup of a cyclic group of
Cn. Then, the kernel of the corresponding coset represen-
tation Cn�=Cd� is the cyclic subgroup Cd itself.

Since any Cd is a normal subgroup of Cn, the coset
decomposition represented by Eq. (1) produces the
corresponding factor group:

Cn=Cd � fCdh1;Cdh2; . . . ;Cdhs=dg: �4�
Lemma 1 allows us to equate the coset representation
Cn�=Cd� with the factor group Cn=Cd and with neglect of
the unfaithfullness of Cn�=Cd�.

Lemma 2. Let Cd be a cyclic subgroup of a cyclic group
of Cn. Then, the corresponding factor group Cn=Cd is
isomorphic to a cyclic group of order n=d, i.e.,

Cn=Cd � Cn=d : �5�
Proof. Let ~h be a generator of Cn, i.e., h~hi � Cn. Then,
we select a coset Cd

~h, which satis®es

�Cd
~h�r � Cd

~hr �6�
for r � 1; 2; . . . ; n. Since ~h is a generator of Cn, Eq. (6)
covers all of the cosets represented by Eq. (1) when the
integer r runs from 1 to n. Because n=d � n, the set of
cosets represented by Eq. (6) has a redundancy. Since the

generator of Cd is ~hn=d , we have

Cd � f~hn=d ; ~h2n=d ; ~h3n=d ; . . . ; ~hd�n=dg: �7�
Hence, the redundancy in Eq. (6) (r � 1; 2; . . . ; n) can be
eliminated as follows.

Let us consider a set of cosets from Cd
~han=d to

Cd
~h�an�1�=d . Then, we have

Cd
~han=d�b � Cd

~han=d ~hb � Cd
~hb; �8�

for b � 1; 2; . . . ; n=d. As a runs from 0 to d ÿ 1, the
cosets of Eq. (6) remain identical with Cd

~hb independent
of a. As a result, the factor group Cn=Cd without
redundancy is obtained as follows.

Cn=Cd � fCd
~h1;Cd

~h2; . . . ;Cd
~hn=dg; �9�

where ~hn=d 2 Cd . Because of Eq. (6), Eq. (9) shows that
the factor group Cn=Cd is a cyclic group of order n=d.

Example 1. All of the coset representations of the point
group C6 (a cyclic group of order 6) are collected in
Table 4, in which their kernels are shown as examples
of Lemmas 1 and 2. Each element of a kernel has a
permutation expressed as a set of 1-cycles, e.g., (1)(2)(3)

Table 1. Character table for Ta

K1 K2 K31 K32

A 1 1 1 1
E(a) 1 1 x x2

E(b) 1 1 x2 x
T 3 )1 0 0

ax � cos(2p/3) + i sin(2p/3)

Table 3. Characteristic monomial table for T

#C1 #C2 #C3

A s1 s1 s1
E s21 s21 sÿ11 s3
T s31 sÿ11 s22 s3
Nj

1
12

1
4

2
3

Table 2. Q-conjugacy character table for T

K1 K2 K3

C1 C2 C3

A 1 1 1
E(=E(a)+E(b)) 2 2 )1
T 3 )1 0

Table 4. Coset representations for C6

Element C6(/C1) C6(/C2) C6(/C3) C6(/C6)

C6 (1 2 3 4 5 6) (1 3 2) (1 2) (1)
C3 (1 3 5)(2 4 6) (1 2 3) (1)(2) (1)
C2 (1 4)(2 5)(3 6) (1)(2)(3) (1 2) (1)

C2
3 (1 5 3)(2 6 4) (1 3 2) (1)(2) (1)

C5
6 (1 6 5 4 3 2) (1 2 3) (1 2) (1)

1 (1)(2)(3)(4)(5)(6) (1)(2)(3) (1)(2) (1)

Kernel C1 C2 C3 C6
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appearing in the C6�=C2� column for the I or C2 element.
As a result, C2 � fI ;C2g is the kernel of C6�=C2�. When
we carry out the coset decomposition of the group C6

by the kernel C2, we have three cosets, where the coset
C2I � fI ;C2g corresponds to the cycle (1)(3)(2),
C2C3 � fC3;C5

6g to (1 2 3) and C2C2
3 � fC2

3 ;C6g to
(1 3 2), as found in Table 4.

Let us consider the regular representation of Cn=d ,
i.e., Cn=d�=C1�. This is related to the factor group Cn=Cd
(Lemma 2), which is in turn related to the coset repre-
sentation Cn�=Cd� (Lemma 1). We here use the symbol
Cn�=Cd��h� to represent the permutation of the coset
representation Cn�=Cd� for an element h (2 Cn). For
example, we have C6�=C2��I� � �1��2��3� and
C6�=C2��C2� � �1��2��3�, as found in Table 4. Thus,
Lemmas 1 and 2 give a theorem.

Theorem 1 (ampli®ed coset representations). Let Cn be a
cyclic group of order n. Then, a coset representation
Cn�=Cd� for the group Cn is obtained from the regular
representation Cn=d�=C1� of the subgroup Cn=d by placing

Cn�=Cd��h� � Cn=d�=C1��~hb� for h 2 Cd
~hb; �10�

where the element ~h is the generator of the cyclic group
Cn=d and the integer b runs over the range
b � 1; 2; . . . ; n=d. The resulting representation is called
an ampli®ed coset representation.

Theorem 1 enables us to equate Cn�=Cd� with Cn=d�=C1�
in terms of the ampli®cation procedure. This situation is
symbolically denoted by the following equation.

Cn�=Cd� �amp
Cn=d�=C1�: �11�

2.2 Ampli®cative equivalence of
irreducible representations

Let ~h � Cn be a generator of a cyclic group Cn, which
has irreducible representations

CCd
n
� fed ; �ed�2; . . . ; �ed�ng �12�

for d � 1; 2; . . . ; n, where we have e � cos�2p=n��
i sin�2p=n�. The element �ed�r corresponds to the element
~h

r � �Cd
n �r, i.e.,

CCd
n
�~hr� � erd : �13�

Since Eq. (13) gives CCd
n
�~hn=d� � en � 1 for r � n=d, we

have

CCd
n
�~han=d� � CCd

n
�~hn=d�a � �en�a � 1; �14�

where a runs from 1 to d. Let us consider ~hr is equal to
an element selected from ~han=d�b for b � 1; 2; . . . ; n=d.
By virtue of Eq. (14), Eq. (13) is transformed into

CCd
n
�~han=d�b� � CCd

n
�~han=d�CCd

n
�~hb�

� CCd
n
�~hb� � �ed�b; �15�

for b � 1; 2; . . . ; n=d. Since e is an nth primitive root of 1,
we have �ed�n=d � en � 1, which means that ed is an
n=dth primitive root of 1. Hence, the last side of Eq. (15)

gives a representation of Cn=d when b runs from 1 to n=d,
i.e.,

CCn=d � fed ; �ed�2; . . . ; �ed�n=dg; �16�
or equivalently

CCn=d �~hb� � �ed�b; �17�
for b � 1; 2; . . . ; n=d. Comparison of Eqs. (15) and (17)
reveals that CCd

n
for the group Cn is obtained from CCn=d

for the group Cn=d by an ampli®cation procedure in
which the integer a runs from 0 to d ÿ 1. By analogy
with Theorem 1, we have a theorem concerning ampli-
®ed irreducible representations.

Theorem 2 (ampli®ed irreducible representations). Let Cn
be a cyclic group of order n. Then, an irreducible
representation CCn=d for the group Cn=d is ampli®ed into
CCd

n
for the group Cn by placing

CCd
n
�~han=d�b� � CCn=d �~hb� � �ed�b �18�

where the integer a runs over the range a � 0; 1;
2; . . . ; d ÿ 1, and the integer b runs over the range
b � 1; 2; . . . ; n=d. The resulting representation is called
an ampli®ed irreducible representation.

By collecting the elements of Eq. (15) satisfying b � n=d,
we have the subgroup Cd (Eq. 7). Since we have
�ed�n=d � en � 1, Eq. (18) shows that all of the elements
contained in Cd have an irreducible representation of
unity. This fact corresponds to lemma 1. Hence, Eq. (18)
of Theorem 2 can be transformed as follows by using the
notation used in Theorem 1:

CCd
n
�h� � CCn=d �~hb� for h 2 Cd

~hb; �19�
where the integer b runs over the range b � 1; 2; . . . ; n=d.

Theorem 2 enables us to equate CCd
n
for the group Cn

with CCn=d for the group Cn=d in terms of the ampli®ca-
tion procedure. This situation is symbolically denoted
by the following equation.

CCd
n
�amp

CCn=d : �20�

Example 2. Let us consider an irreducible representation,
CC2

6
, for a cyclic group C6, where the value e2 is assigned

to a generator C6. Note that e is the sixth primitive root
of 1. Then, CC2

6
can be schematically represented by the

left half of the following illustration:

C6 C2
6 C3

6

l l l
CC2

6
e2 �e2�2 �e2�3 ) e2 e4 I CC3

�e2�4 �e2�5 �e2�6 e2 e4 I
l l l l l l

C4
6 C5

6 I C3 C2
3 I

This half corresponds to the right half assigned to CC3

for the group C3. Since lemma 2 indicates C3 � C6=C2

for the present example, the scheme depicted above
shows that CC3

for the cyclic group C3 can be ampli®ed
into CC2

6
for the cyclic group C6. Note that the sets
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appearing in the left half of the above scheme (fC6;C4
6g,fC2

6 ;C
5
6g, and fC3

6 ; Ig) are the set of cosets corresponding
to the factor group C6=C2.

2.3 Number-theoretic vectors

Since each irreducible representation of a cyclic group
Cn is of degree 1, the following lemma is easily
obtained.

Lemma 3. Each irreducible representation of a cyclic
group Cn appears once in the regular representation
Cn�=C1�, i.e.,
Cn�=C1� � CCn � CC2

n
� � � � � CCn

n
: �21�

Let ~Cd � ~Cn=�n=d� be a row vector selected from a Q-
conjugacy character table. The de®nition of Q-con-
jugacy characters [31] and the ampli®cative equivalence
de®ned in Theorem 2 give

~Cd �
X

�r;n=d��1
~CCrd

n
�

X
�r;n=d��1

~CCr
n=d
: �22�

Thereby, Eq. (21) can be transformed into

Cn�=C1� �
Xdjn X

�r;n=d��1
~CCr

n=d
�
Xdjn

~Cd ; �23�

where the symbol djn shows that the summation is over
all divisors d of n. Note that all of the elements of
Cn�=C1� and ~Cd are integers. The ampli®cative equiva-
lence de®ned in Theorem 1 combined with Eq. (23) gives
a lemma.

Lemma 4. The markaracter Cn�=Cd� is represented by a
sum of Q-conjugacy characters as follows:

Cn�=Cd� �amp
Cn=d�=C1� �

Xd 0 jnd
~Cd 0 : �24�

Let us now consider the character (®xed-point vector) of
each coset representation. For simplicity, the symbol for
the coset representation is also used to designate the
corresponding character. In light of this convention, let
us now consider row vectors:

g�~n� � Cn�=Cd� �amp
C~n�=C1� �25�

f�~n� � ~Cn=~n; �26�
where ~n � n=d. It should be noted that the row vector
g�~n� is the row of the corresponding markaracter table,
while the row vector f�~n� is the row of the corresponding
Q-conjugacy character table. Since each element of g�~n�
and of f�~n� is a number-theoretical function, we call
these vectors number-theoretical vectors. In light of
Lemma 4, Theorem 1.22 of Ref. [33] for number-
theoretical functions is easily extended so as to deal with
number-theoretical vectors.

Theorem 3. Since Eq. (24) gives

g�~n� �
Xd 0 j~n

f�d 0� �27�
we have

f�~n� �
Xd 0 j~n

l
~n
d 0

� �
g�d 0�; �28�

where l ~n
d 0
ÿ �

denotes the number-theoretical MoÈbius func-
tion.

Theorem 3 is equivalent to the one described in Chapter
13.1 of Ref. [34], though the latter implies that the
characters 1Cn

Cd
used in place of g�~n� are associated with

conjugacy classes. On the other hand, the vectors f�~n�
and g�~n� correspond to Q-conjugacy classes in the
present treatment. In other words, the characters 1Cn

Cd
are

class functions, while the vectors f�~n� and g�~n� are
dominant-class (or Q-conjugacy-class) functions. This
means that the Q-conjugacy character table and the
markaracter table of a cyclic group Cn are square
matrices of the same size. Note that the vectors f�~n� are
the row vectors of the Q-conjugacy character table of a
cyclic group Cn and the vectors g�~n� are the row vectors
of the markaracter table of Cn.

From the viewpoint of the present series of works,
Theorem 3 can be regarded as showing the intercon-
version between a markaracter table and a Q-conjugacy
character table for a cyclic group. For the purpose of
describing this interconversion more clearly, we here use
a MoÈ bius function l�di; dj� as follows:

l�di; dj� �

�ÿ1�r if dj=di is a product of r of
different prime numbers

0 if dj=di is a multiplier of the
square of a prime number

0 if dj=di is not an integer.

8>>>><>>>>:
�29�

The usual number-theoretical MoÈ bius function is slight-
ly extended to cover rational numbers; thus, l�k� (for
k � dj=di) is the usual number-theoretical MoÈ bius func-
tion if k is an integer and is equal to zero otherwise [35].
Thereby, Theorem 3 is rewritten in terms of a matrix
expression in the following corollary.

Corollary 1. Let D be the Q-conjugacy character table of
a cyclic group Cn. Let M be the matrix derived by
inversing the alignment of the rows from the markaracter
table of Cn:

D �

f�d1�
f�d2�

..

.

f�n�

0BBBB@
1CCCCA �

1CCCCCA

0BBBBB@

# Cd1 # Cd2 # Cn

~Cd1 ~c11 ~c12 � � � ~c1s

~Cd2 ~c21 ~c22 � � � ~c2s

..

. ..
. ..

. . .
. ..

.

~Cn ~cs1 ~cs2 � � � ~css

�30�
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M �

g�d1�
g�d2�

..

.

g�n�

0BBBBB@

1CCCCCA �
1CCCCCCA

0BBBBBB@

# Cd1 # Cd2 # Cn

Cn�=Cn� m11 m12 � � � m1s

..

. ..
. ..

. . .
. ..

.

Cn�=Cd2� msÿ1 1 msÿ1 2 � � � msÿ1 s

Cn�=Cd1� ms1 ms2 � � � mss

;

�31�
where the integers d1; d2; . . . represent the divisors of n
and are aligned from small to large. Let us construct
an interconversion matrix:

W �
l�d1; d1� l�d2; d1� � � � l�n; d1�
l�d1; d2� l�d2; d2� � � � l�n; d2�

..

. ..
. . .

. ..
.

l�d1; n� l�d2; n� � � � l�n; n�

0BBB@
1CCCA; �32�

where the symbol l�di; dj� denotes the extended MoÈbius
function de®ned by Eq. (29). Then, D is obtaind from M by
means of the following equation:

D � WM : �33�
The interconversion matrix W is easily shown to be a
lower-triangular matrix in which all diagonal elements
are equal to unity.

Example 3. The point group C6 has a markaracter table,
each row of which is expressed by

g�6� � �6; 0; 0; 0�
g�3� � �3; 3; 0; 0�
g�2� � �2; 0; 2; 0�
g�1� � �1; 1; 1; 1�:
Equations for this case (Eq. 27) are calculated to be

g�6� � f�1� � f�2� � f�3� � f�6�
g�3� � f�1� � f�3�
g�2� � f�1� � f�2�
g�1� � f�1�:
In light of Theorem 3, we have

f�1� � f�1� � �1; 1; 1; 1�

f�2� � l
2

1

� �
g�1� � l

2

2

� �
g�2�

� ÿg�1� � g�2� � �1;ÿ1; 1;ÿ1�

f�3� � l
3

1

� �
g�1� � l

3

3

� �
g�2�

� ÿg�1� � g�3� � �2; 2;ÿ1;ÿ1�

f�6� � l
6

1

� �
g�1� � l

6

2

� �
g�2� � l

6

3

� �
g�3� � l

6

6

� �
g�6�

� g�1� ÿ g�2� ÿ g�3� � g�6� � �2;ÿ2;ÿ1; 1�:
The resulting vectors, f�1�, f�2�, f�3�, and f�6�, are the
row vectors of the Q-conjugacy character table of C6.

Thus, these data can be summarized to give a matrix
expression,

1 1 1 1

1 ÿ1 1 ÿ1
2 2 ÿ1 ÿ1
2 ÿ2 ÿ1 1

0BBBB@
1CCCCA �

1CCCCCA

0BBBBB@
A 1 0 0 0

B ÿ1 1 0 0

E2 ÿ1 0 1 0

E1 1 ÿ1 ÿ1 1

�

1 1 1 1

2 0 2 0

3 3 0 0

6 0 0 0

0BBBB@
1CCCCA; �34�

where the matrix in the left-hand side represents the Q-
conjugacy character table of C6.

3 Characteristic monomials

3.1 The ®rst and the last column
of a characteristic monomial table for a cyclic group

From Eq. (33) of Corollary 1, we easily obtain the
following equation:

DMÿ1 � W : �35�
Since M is an alternative form of a markaracter table,
the left-hand side of Eq. (35) indicates that this case is a
special case of Theorem 1 of the preceding paper. In
other words, the matrix W appearing in the right-hand
side of Eq. (35) is the multiplicity matrix for the
subduction of a Q-conjugacy representation of Cn into
Cn, i.e., Cn=~n # Cn. Thus, each element of a row of W
indicates the power of a dummy variable sd 0 for the
corresponding divisor d 0 � n=di. By using the notation of
Theorem 3, we de®ne a characteristic monomial for
Cn=~n # Cn as follows.

Z�Cn=~n # Cn; sd 0 � �
Yd 0 j~n

sl�~n=d 0�
d 0 : �36�

The dummy variables derived by Eq. (36) construct the
last column of a characteristic monomial table for a
cyclic group.

On the other hand, the subduction Cn=~n # C1 obvi-
ously corresponds to the following monomial:

Z�Cn=~n # C1; sd 0 � � su�~n�
1 ; �37�

where u�~n� is the Euler function. The dummy variables
derived by Eq. (37) construct the ®rst column of a
characteristic monomial table for a cyclic group

Lemma 5. Each monomial represented by Eq. �36�
contains dummy variables with the power of ÿ1; 0; or 1
because of the nature of the extended MoÈbius function.
Each monomial represented by Eq. �37� contains dummy
variables with the power of a natural number.
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3.2 Characteristic monomial tables for cyclic groups
of prime-number order

By means of Eqs. (36) and (37), we are able to construct
the characteristic monomial tables for cyclic groups
having the order of a prime number p. The point group
Cp has a markaracter table, each row of which is
expressed by

g�p� � �p; 0�
g�1� � �1; 1�:
Equations for this case (Eq. 27) are calculated to be

g�p� � f�1� � f�p�
g�1� � f�1� :
Thereby, we have the following relationship:

f�1� � g�1�

f�p� � l
p
1

� �
g�1� � l

p
p

� �
g�p� � ÿg�1� � g�p�; �38�

which produces the rows of the Q-conjugacy character
table of Cp.

f�p� � �p ÿ 1; 1�
f�1� � �1;ÿ1�:
The transformation described above can be shown more
clearly in terms of Eq. (32). Thus, we have the matrix W
for this case:

W � l�1; 1� l�p; 1�
l�1; p� l�p; p�

� �
� l�1� 0

l�p� l�1�
� �

� 1 0

ÿ1 1

� �
: �39�

This matrix gives the multiplicities that are the powers
of such dummy variables. As a result, Eq. (36) gives
characteristic monomials for the group Cp:

f�1�
f�p�

� �
�

! 
Cp 1 0
C1 ÿ1 1

g�1�
g�p�

� � � � � s1
� � � sÿ11 sp

: �40�

This result combined with the one derived from Eq. (37)
gives the characteristic monomial table for Cp (Table 5).
Example 4. The point group C2 has a markaracter table,
each row of which is expressed by

g�2� � �2; 0�
g�1� � �1; 1�:
Equations for this case (Eq. 27) are calculated to be

g�2� � f�1� � f�2�
g�1� � f�1�:

Hence, we have

f�1� � g�1� � �1; 1�

f�2� � l
2

1

� �
g�1� � l

2

2

� �
g�2�

� ÿg�1� � g�2� � �1;ÿ1�:
These data can be summarized into an matrix expres-
sion. Since the number-theoretical vector g�~n� corre-
sponds to the coset representation C~n�=C1�, we select a
dummy variable s~n which is equal to the size of the orbit
governed by C~n�=C1�. The 2� 2 matrix represents the
multiplicities of the g�~n� vectors [31]. The multiplicities
are the powers of such dummy variables which give a
monomial for each Q-conjugacy representation. As a
result, Eq. (36) gives dummy variables for the group C2

f�1�
f�2�

� �
�

! 
A 1 0
B ÿ1 1

g�1�
g�2�

� � � � � s1
� � � sÿ11 s2:

�41�

This result combined with the one derived from Eq. (37)
gives the characteristic monomial table for C2 (Table 6).

Similarly, the point group C3 has a markaracter table
shown in Table 7.

3.3 Characteristic monomial tables for cyclic groups

Let Cn be a cyclic group having Cu as a cyclic subgroup.
Suppose we have obtained the Q-conjugacy character
table of Cu denoted as DCu and the characteristic
monomial table of Cu, where each monomial of the last
column is represented by

Z C�u�u=~u; sd 0
� �

; �42�
where ~u runs over all of the divisors of u. Note that the
variable is obtained by applying Eq. (36) to the subgroup
Cu. Suppose, in addition, that we have the Q-conjugacy
character table ofCn denoted as DCn . Then, these data are
capable of giving the characteristic monomial table of Cn.

From the table DCn , we select the columns corre-
sponding to the subgroup Cu. As the result of this sub-
duction, we have a matrix designated by the symbol
DCn#Cu . This matrix is multiplied by the inverse of DCu as
follows.

DCn#Cu Dÿ1Cu
� Y ; �43�

where each row of the resulting matrix Y is represented
by

Yn=~n � �y1; . . . ; yu=~u; . . .�; �44�
where ~u runs over all of the divisors of u. Each element
of Yn=~n represents the multiplicity of C�u�u=~u that is a Q-
conjugacy representation of Cu. Thus, we have

Table 5. Characteristic monomials for Cp

# C1 # Cp

Cp s1 s1

C1 spÿ1
1 sÿ11 sp

Table 6. Characteristic monomials for C2

# C1 # C2

A s1 s1
B s1 sÿ11 s2
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C�n�n=~n # Cu �
X~uju

yu=~uC
�u�
u=~u; �45�

where C�n�n=~n denotes each row of DCn . According to Eq.
(45), the corresponding characteristic monomial is
de®ned by

Z C�n�n=~n # Cu; sd 0
� �

�
Y~uju

Z C�u�u~u ; sd 0
� �h iyu=~u

�46�
by using Eq. (43). The variables in the right-hand side of
Eq. (46) appear in the last column of the characteristic
monomial table of Cu that is obtained by applying
Eq. (36) to the subgroup Cu.

The monomials obtained by Eq. (46) when ~n runs
over all of the divisors of n construct the # Cu column of
the characteristic monomial table of Cn.

Example 5. Let us revisit the point group C6. The results
of Example 3 are summarized into a matrix expression:

f�1�
f�2�
f�3�
f�6�

0BBB@
1CCCA �

1CCCCA
0BBBB@

A 1 0 0 0

B ÿ1 1 0 0

E2 ÿ1 0 1 1

E1 1 ÿ1 ÿ1 1

�

g�1�
g�2�
g�3�
g�6�

0BBB@
1CCCA
�
� � �
� � �
� � �

#C6

s1

sÿ11 s2
sÿ11 s3

s1sÿ12 sÿ13 s6

: �47�

The 4� 4 matrix represents the multiplicities of the g�~n�
vectors [31]. The multiplicities are the powers of such
dummy variables which give a monomial for each Q-
conjugacy representation. The monomials construct the
column of # C6.

The monomials for the column of # C2 are obtained
by a two-step procedure. First, we select the # C1 and
# C2 columns from the Q-conjugacy character table of
C6 to form a 4� 2 matrix, which is multiplied by the
inverse (Dÿ1C2

)of the Q-conjugacy character table of C2.
The resulting 4� 2 matrix contains the multiplicities of
Q-conjugacy characters of C2 as shown after the dotted
lines. Second, we take monomials from Table 6 ac-
cording to the multiplicities and multiply them to obtain
the characteristic monomials for the column of # C2.

1 1

1 ÿ1
2 2

2 ÿ2

0BBB@
1CCCA

Dÿ1C2

1
2

1
2

1
2 ÿ 1

2

 !

�

1CCCCA
0BBBB@

A E

A 1 0

B 0 1

E2 2 0

E1 0 2

C2

� � � A � � �
� � � E � � �
� � � 2A � � �
� � � 2E � � �

# C1 # C2

s1 s1
s1 sÿ11 s2
s21 s21
s21 sÿ21 s22:

�48�

The monomials for the column of # C3 are also obtained
by a two-step procedure. We use the inverse (Dÿ1C3

) of
the Q-conjugacy character table of C3 and the data of
Table 7

1 1

1 1

2 ÿ1
2 ÿ1

0BBB@
1CCCA

Dÿ1C3

1
3

1
3

2
3 ÿ 1

3

 !

�

1CCCCA
0BBBB@

A E

A 1 0

B 1 0

E2 0 1

E1 0 1

C3

� � � A � � �
� � � A � � �
� � � E � � �
� � � E � � �

# C1 # C3

s1 s1
s1 s1
s21 sÿ11 s3
s21 sÿ11 s3:

�49�

The resulting columns of monomials are collected to give
a characteristic monomial table for C6 (Table 8).

3.4 Characteristic monomial tables for ®nite groups

Let G be a cyclic group having Cu as a cyclic subgroup.
The characteristic monomial table of Cu contains the last
column that consists of monomials represented by Eq.
(42). The Q-conjugacy characters of G (~C1, ~C2, . . . ~Cs)
are regarded as the row vectors of the Q-conjugacy
character table DG (s� s matrix). We select the columns
corresponding to the subgroup Cu to produce an s� r
matrix designated by the symbol DG#Cu . This matrix is
multiplied by the inverse of DCu as follows.

DG#Cu Dÿ1Cu
� X ; �50�

where each row of the resulting matrix X is represented
by

Xi � �x1; . . . ; xu=~u; . . .�; �51�
for i � 1; 2; . . . ; s, Each element of Xi represents the

multiplicity of C�u�u=~u that is a Q-conjugacy representation
of Cu. Thus, we have

Ci # Cu �
X~uju

xu=~uC
�u�
u=~u; �52�

Table 8. Characteristic monomials for C6

C6 # C1 # C2 # C3 # C6

A s1 s1 s1 s1
B s1 sÿ11 s2 s1 sÿ11 s2
E2 s21 s21 sÿ11 s3 sÿ11 s3

E1 s21 sÿ21 s22 sÿ11 s3 s1sÿ12 sÿ13 s6

Table 7. Characteristic monomials for C3

# C1 # C3

A s1 s1
E s21 sÿ11 s3
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where Ci denotes the Q-conjugacy representation corre-
sponding to each row (~Ci) of DG. Hence, the corre-
sponding characteristic monomial is de®ned by

Z�Ci # Cu; sd 0 � �
Y~uju

Z C�u�u=~u; sd 0
� �h ixu=~u �53�

for i � 1; 2; . . . ; s by using Eq. (50).

The monomials obtained by Eq. (53) when ~n runs over
all of the divisors of n construct the # Cu column of the
characteristic monomial table of Cn.

Example 6. Let us examine the point group T, which has
a Q-conjugacy character table:

DT �
1A0@

# C1 # C2 # C3

A 1 1 1
E 2 2 ÿ1
T 3 ÿ1 0

: �54�

The monomials for the column of # C2 are obtained by
a two-step procedure. First, we select the # C1 and # C2

columns from the Q-conjugacy character table of T to
form a 3� 2 matrix, which is multiplied by the inverse
(Dÿ1C2

) of the Q-conjugacy character table of C2. The
resulting 3� 2 matrix contains the multiplicities of Q-
conjugacy characters of C2 as shown after the dotted
lines. Second, we take monomials from Table 6 accord-
ing to the multiplicities and multiply them to obtain the
characteristic monomials shown in the column of # C2.

Dÿ1C2

1 1

2 2

3 ÿ1

0B@
1CA 1

2
1
2

1
2 ÿ 1

2

 !

�

1CCA
0BB@

A E

A 1 0

E 2 0

T 1 2

C2

� � � A � � �
� � � 2A � � �
� � � A� 2E � � �

# C1 # C2

s1 s1
s21 s21
s31 sÿ11 s22:

�55�
The monomials for the column of # C3 are also obtained
by a two-step procedure. We use the inverse (Dÿ1C3

) of the
Q-conjugacy character table of C3 and the data of
Table 7

Dÿ1C3

1 1

2 ÿ1
3 0

0B@
1CA 1

3
1
3

2
3 ÿ 1

3

 !

�

1CCA
0BB@

A E

A 1 0

E 0 1

T 1 1

C3

� � � A � � �
� � � E � � �
� � � A� E � � �

# C1 # C3

s1 s1

s21 sÿ11 s3

s31 s3:

�56�

The resulting columns of monomials are collected to give
a characteristic monomial table for T (Table 9).

Example 7. Let us examine the point group Th, which
has a Q-conjugacy character table:

DTh �

1CCCCCCCCCA

0BBBBBBBBB@

# C1 # C2 # Cs # Ci # C3 # S6

Ag 1 1 1 1 1 1

Au 1 1 ÿ1 ÿ1 1 ÿ1
Eg 2 2 2 2 ÿ1 ÿ1
Eu 2 2 ÿ2 ÿ2 ÿ1 1

Tg 3 ÿ1 ÿ1 3 0 0

Tg 3 ÿ1 1 ÿ3 0 0

:

�57�
The monomials for the column of # C2 are obtained by a
two-step procedure. First, we select the # C1 and # C2

columns from the Q-conjugacy character table of Th
to form a 6� 2 matrix, which is multiplied by the
inverse (Dÿ1C2

) of the Q-conjugacy character table of C2.
The resulting 6� 2 matrix contains the multiplicities
of Q-conjugacy characters of C2 as shown after the
dotted lines. Second, we take monomials from Table 6
according to the multiplicities and multiply them to
obtain the characteristic monomials shown in the
column of # C2.

1 1

1 1

2 2

2 2

3 ÿ1
3 ÿ1

0BBBBBBBB@

1CCCCCCCCA
Dÿ1C2

1
2

1
2

1
2 ÿ 1

2

 !

�

1CCCCCCCCCCA

0BBBBBBBBBB@

A B

Ag 1 0

Au 1 0

Eg 2 0

Eu 2 0

Tg 1 2

Tu 1 2

C2

� � � A � � �
� � � A � � �
� � � 2A � � �
� � � 2A � � �
� � � A� 2B � � �
� � � A� 2B � � �

# C2

s1
s1
s21
s21

sÿ11 s22
sÿ11 s22

�58�

We select the # C1 and # Cs columns from the Q-
conjugacy character table of Th to form a 6� 2 matrix,
from which we obtain the multiplicities of Q-conjugacy
characters:

Table 9. Characteristic monomials for T

T # C1 # C2 # C3

A s1 s1 s1
E s21 s21 sÿ11 s3
T s31 sÿ11 s22 s3

416



1 1

1 ÿ1
2 2

2 ÿ2
3 ÿ1
3 1

0BBBBBB@

1CCCCCCA
Dÿ1Cs

1
2

1
2

1
2 ÿ 1

2

� �

�

1CCCCCCCA

0BBBBBBB@

A0 A00

Ag 1 0

Au 0 1

Eg 2 0

Eu 0 2

Tg 1 2

Tu 2 1

Cs

� � � A0 � � �
� � � A00 � � �
� � � 2A0 � � �
� � � 2A00 � � �
� � � A0 � 2A00 � � �
� � � 2A0 � A00 � � �

# Cs

s1
sÿ11 s2

s21
sÿ21 s22
sÿ11 s22

s2:

�59�

We select the # C1 and # Ci columns from the Q-
conjugacy character table of Th to form a 6� 2 matrix,
from which we obtain the multiplicities of Q-conjugacy
characters:

1 1
1 ÿ1
2 2
2 ÿ2
3 3
3 ÿ3

0BBBBBB@

1CCCCCCA
Dÿ1Ci

1
2

1
2

1
2 ÿ 1

2

� �

�

1CCCCCCA

0BBBBBB@

Ag Au

Ag 1 0
Au 0 1
Eg 2 0
Eu 0 2
Tg 3 0
Tu 0 3

Ci

� � � Ag � � �
� � � Au � � �
� � � 2Ag � � �
� � � 2Au � � �
� � � 3Ag � � �
� � � 3Au � � �

# Ci

s1
sÿ11 s2

s21
sÿ21 s22

s31
sÿ31 s32:

�60�

The monomials for the column of # C3 are also obtained
by a two-step procedure. We use the inverse (Dÿ1C3

) of
the Q-conjugacy character table of C3 and the data of
Table 7

1 1

1 1

2 ÿ1
2 ÿ1
3 0

3 0

0BBBBBBBB@

1CCCCCCCCA
Dÿ1C3

1
3

1
3

2
3 ÿ 1

3

 !

�

1CCCCCCCCCA

0BBBBBBBBB@

A E

Ag 1 0

Au 1 0

Eg 0 1

Eu 0 1

Tg 1 1

Tu 1 1

C3

� � � A � � �
� � � A � � �
� � � E � � �
� � � E � � �
� � � A� E � � �
� � � A� E � � �

# C3

s1
s1

sÿ11 s3
sÿ11 s3

s3
s3:

�61�

The monomials for the column of # S6 are also obtained
by a two-step procedure. We use the inverse (Dÿ1S6

) of the
Q-conjugacy character table of S6 and the data of

Table 7. Note that the group S6 is isomorphic to the
group C6.

1 1 1 1

1 ÿ1 1 ÿ1
2 2 ÿ1 ÿ1
2 ÿ2 ÿ1 1

3 3 0 0

3 ÿ3 0 0

0BBBBBBBB@

1CCCCCCCCA

Dÿ1C3

1
6

1
6

1
6

1
6

1
6 ÿ 1

6 ÿ 1
6

1
6

1
3

1
3 ÿ 1

6 ÿ 1
6

1
3 ÿ 1

3
1
6 ÿ 1

6

0BBBB@
1CCCCA

�

1CCCCCCCCCCA

0BBBBBBBBBB@

A B E1 E2

Ag 1 0 0 0

Au 0 1 0 0

Eg 0 0 0 1

Eu 0 0 1 0

Tg 1 0 0 1

Tu 0 1 1 0

S6

� � � A � � �
� � � B � � �
� � � E2 � � �
� � � E1 � � �
� � � A� E2 � � �
� � � B� E1 � � �

# S6

s1
sÿ11 s2
sÿ11 s3

s1sÿ12 sÿ13 s6
s3

sÿ13 s6:

�62�
The resulting columns of monomials are collected to give
a characteristic monomial table for Th (Table 10).

The discussions described in this and the preceding
sections permit us to extend Lemma 5 for a special case
into a more general case to give a theorem.

Theorem 4. Each characteristic monomial contains dum-
my variables with the power of an integer.

4 Combinatorial enumeration

Suppose that a skeleton of symmetry G has a set of
positions which are associated with a permutation
representation P. The permutation representation is
converted into the corresponding matrix representation.
The latter gives a ®xed-point vector (FPV), each element
of which is the number of points ®xed under every
subgroup action. The FPV can be regarded as a Q-
conjugacy character which is multiplied by the inverse
of the Q-conjugacy character table of G (i.e., Dÿ1G ) to
give the multiplicities of Q-conjugacy characters. These
multiplicities correspond to the multiplicities (ai) of
Q-conjugacy representations, Ci (i � 1; 2; . . .), which

Table 10. Characteristic monomials for Th

Th # C1 # C2 # C3 # Ci # C3 # S6

Ag s1 s1 s1 s1 s1 s1

Au s1 s1 sÿ11 s2 sÿ11 s2 s1 sÿ11 s2

Eg s21 s21 s21 s21 sÿ11 s3 sÿ11 s3

Eu s21 s21 sÿ21 s22 sÿ21 s22 sÿ11 s3 s1sÿ12 sÿ13 s6

Tg s31 sÿ11 s22 sÿ11 s22 s31 s3 s3

Tu s31 sÿ11 s22 s1s2 sÿ31 s32 s3 sÿ13 s6

Nu
1
24

1
8

1
8

1
24

1
3

1
3
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represent a subdivision of the positions under the action
of the group G. This is symbolically represented by
the following equation.

P �
X

i

aiCi: �63�

Since the subductions of every representation Ci are
assigned to the characteristic monomials represented by
Eq. (53), these are multiplied in accord with Eq. (63) to
de®ne an subduced cycle index (SCI):

SCI�G # Cu; s0d� �
Y

i

Z�Ci # Cu; s0d
� ��ai ; �64�

where the cyclic subgroup Cu is tentatively ®xed. In a
similar way to de®nition 4 of Ref. [36], we have
the de®nition of a cycle index (CI) on the basis of
Eq. (64):

CI�G; s0d� �
X

u

Nu

Y
i

Z�Ci # Cu; s0d�
� �ai ; �65�

where we place

Nu � u�jCuj�
jNG�Cu�j �66�

in light of Eq. (54) of Ref. [29]. The CI based on Eq. (65)
is capable of combinatorial enumeration in place of the
CI obtained alternatively in Corollary 1 described in the
preceding paper. Hence, this is restated as a theorem by
using the CI based on Eq. (65).

Theorem 5. Suppose that gc of ligands Xc �c � 1; 2; . . . ; v�
are selected from a set of ligands

X � fX1;X2; . . . ;Xvg; �67�
where we have a partition:

�g� � g1 � g2 � � � � � gv � n: �68�
They are placed on n of the positions in a skeleton to give
isomers with the weight (molecular formula)

Wg �
Yv
c�1

X
gc
c : �69�

A generating function for the total number Ag of isomers
with the weight Wg is represented byX

g

AgWg � CI �G; sd 0 �; �70�

where

sd 0 �
Xv

c�1
X d 0

c : �71�

This theorem gives enumeration results equivalent to
those of PoÂ lya's theorem, though the de®nitions of the
CI are di�erent between the two theorems.

Example 8. [60]Fullerene (C60) of Ih symmetry gives a
derivative of Th symmetry. The symmetrical properties
of the derivative have been disscussed in terms of the
subduction-of-coset representation approach [37], where
its six addents have been shown to belong to the

Th�=C2v) orbit. Let us here consider the Th derivative 1
as a mother skeleton, in which each of the six addents is
a gem-dibromomethylene moiety, in which each circle
denotes a bromine atom. For the purpose of
comprehension of the symmetrical features of Th, the
Th skeleton is schematically represented by 10 in which
gem-dibromomethylene moieties are expressed by thick
lines.

Complete hydrolysis of the gem-dibromomethylene
groups yields derivative 2 whose carbonyl groups are
denoted by =O. For simplicity, each resulting carbonyl
group is expressed by a thick line with a circle as shown
in 20.

Suppose that a set of several gem-dibromomethylene
moieties is partially converted into carbonyl moieties to
produce a derivative having a subsymmetry of Th.

The Th�=C2v) orbit gives �6; 2; 4; 0; 0; 0� as an FPV,
which is multiplied by the inverse of the Q-conjugacy
character table of the Th group, i.e., Dÿ1Th

derived from
Eq. (57). It follows that

�6; 2; 4; 0; 0; 0�

1
24

1
24

1
24

1
24

1
8

1
8

1
8

1
8

1
8

1
8 ÿ 1

8 ÿ 1
8

1
8 ÿ 1

8
1
8 ÿ 1

8 ÿ 1
8

1
8

1
24 ÿ 1

24
1
24 ÿ 1

24
1
8 ÿ 1

8
1
3

1
3 ÿ 1

6 ÿ 1
6 0 0

1
3 ÿ 1

3 ÿ 1
6

1
6 0 0

0BBBBBBBBB@

1CCCCCCCCCA
� �1; 0; 1; 0; 0; 1�: �72�

The resulting row vector indicates that Eq. (63) for this
case is represented as follows:

Th�=C2v� � Ag � Eg � Tu: �73�
Hence, we use the Ag, Eg, and Tu rows of Table 9, where
the characteristic monomials of each subsymmetry are
multiplied to give an SCI in accord with Eq. (64). For

418



example, we have s1 � sÿ11 s3 � sÿ13 s6 � s6, for the S6

column. Thereby, we obtain the corresponding CI,

CI�Th; sd� � 1
24 s61 � 1

8 s21s
2
2 � 1

8 s41s2 � 1
24 s32 � 1

3 s23 � 1
3 s6;

�74�
by means of Eq. (65). Suppose that the variable x
represents unchanged cyclopropanes while the variable y
represents changed cyclopropanes. Then, we have an
inventory,

sd � xd � yd ; �75�
which is introduced into Eq. (74). The resulting equation
is expanded to give the following generating function:

f � �x6� y6���x5y � xy5��2�x4y2� x2y4�� 3x3y3; �76�
where each coe�cient of the term xmyn indicates the
number of isomers having m unchanged and n changed
cyclopropane rings (m� n � 6). To illustrate the result,
the derivatives for n � 1±3 are depicted in Fig. 1.

It should be noted that if a derivative is chiral an
arbitrary enantiomer is depicted in Fig. 1.

5 Characteristic monomial tables
to (non)dominant USCI tables

In a previous paper [30], we de®ned USCI tables for
dominant and nondominant representations in terms of
the subduction of dominant and nondominant repre-
sentations. In the light of the present method, such
USCI tables can be alternatively obtained by virtue of
the reduction of dominant and nondominant represen-
tations. Thus, the permutation P in Eq. (63) is replaced
by a dominant or nondominant representation repre-
sented by G�=Gj�. Thereby, we have

G�=Gj� �
X

i

biCi: �77�

In a similar way as described for Eq. (64), the
corresponding USCI can be calculated by

USCI�G�=Gj� # Cu; s0d� �
Y

i

Z�Ci # Cu; s0d�
� �bi : �78�

The resulting USCIs are applicable to the enumeration
described in Ref. [30].

Example 9. This is a continuation of Example 8 con-
cerning the Th group. In a similar way as described
for deriving Eqs. (72) and (73), each dominant or
non-dominant representation is reduced into a sum of
Q-conjugacy representations. Thus, for dominant
representations, we have the following results:

Th�=C1� � Ag � Au � Eg � Eu � 3Tg � 3Tu;

Th�=C2� � Ag � Au � Eg � Eu � Tg � Tu;

Th�=Cs� � Ag � Eg � Tg � 2Tu;

Th�=Ci� � Ag � Eg � 3Tg;

Th�=C3� � Ag � Au � Tg � Tu;

Th�=S6� � Ag � Tg:

On the other hand, we have the following reductions for
nondominant representations:

Th�=C2v� � Ag � Eg � Tu;

Th�=C2h� � Ag � Eg � Tg;

Th�=D2� � Ag � Au � Eg � Eu;

Th�=D2h� � Ag � Eg;

Th�=T� � Ag � Au;

Th�=Th� � Ag:

Fig. 1. Derivatives form the skeleton 1

Table 11. Unit subduced cycle indices (USCIs)

Th # C1 # C2 # Cs # Ci # C3 # S6

(Dominant USCIs)

Th (/T) s21 s21 s2 s2 s21 s2

Th (/C1) s241 s121 s121 s121 s81 s41
Th (/C2) s121 s41s42 s62 s62 s43 s26
Th (/Cs) s121 s62 s41s42 s62 s43 s26
Th (/Ci) s121 s62 s62 s121 s43 s43
Th (/C3) s81 s42 s42 s42 s21s23 s2s6

Th (/S6) s41 s22 s22 s41 s1s3 s1s3

(Non dominant USCIs)

Th (/C2v) s61 s21s22 s41s2 s32 s23 s6

Th (/C2h) s61 s21s22 s21s22 s61 s23 s23
Th (/D2) s61 s61 s32 s32 s23 s6

Th (/D2h) s31 s31 s31 s31 s3 s3

Th (/T) s21 s21 s2 s2 s21 s2

Th (/Th) s1 s1 s1 s1 s1 s1

Nu
1
24

1
8

1
8

1
24

1
3

1
3
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In the same way as shown in Example 9 for the
representation Th�=C2v� where Eq. (73) gives respective
monomials appearing in the CI (Eq. 73), each of the
reduction data listed above give USCIs for a dominant
or nondominant representation, as collected in Table 11.
The USCIs in Table 11 are identical with the counter-
parts selected from the full USCI table (Table 6 in Ref.
[37]).

6 Conclusion

We have discussed

1. Ampli®cative equivalence of coset representations
and irreducible representations.

2. Number-theoretical vectors.
3. The MoÈ bius function.

The ®rst and second concepts have clari®ed the inter-
conversion between dominant markaracters and Q-
conjugacy characters for cyclic groups. The third one
has given characteristic monomials for a cyclic group,
which are in turn used to build up characteristic
monomials for a ®nite group. This process indicates
that all the powers appearing in a characteristic mono-
mial are integers. The characteristic monomials are
applied to the enumeration of isomers.
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